FOS-1 Promotes Basement-Membrane Removal during Anchor-Cell Invasion in C. elegans

نویسندگان

  • David R. Sherwood
  • James A. Butler
  • James M. Kramer
  • Paul W. Sternberg
چکیده

Cell invasion through basement membranes is crucial during morphogenesis and cancer metastasis. Here, we genetically dissect this process during anchor-cell invasion into the vulval epithelium in C. elegans. We have identified the fos transcription factor ortholog fos-1 as a critical regulator of basement-membrane removal. In fos-1 mutants, the gonadal anchor cell extends cellular processes normally toward vulval cells, but these processes fail to remove the basement membranes separating the gonad from the vulval epithelium. fos-1 is expressed in the anchor cell and controls invasion cell autonomously. We have identified ZMP-1, a membrane-type matrix metalloproteinase, CDH-3, a Fat-like protocadherin, and hemicentin, a fibulin family extracellular matrix protein, as transcriptional targets of FOS-1 that promote invasion. These results reveal a key genetic network that controls basement-membrane removal during cell invasion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The transcription factor HLH-2/E/Daughterless regulates anchor cell invasion across basement membrane in C. elegans.

Cell invasion through basement membrane is a specialized cellular behavior critical for many developmental processes and leukocyte trafficking. Invasive cellular behavior is also inappropriately co-opted during cancer progression. Acquisition of an invasive phenotype is accompanied by changes in gene expression that are thought to coordinate the steps of invasion. The transcription factors resp...

متن کامل

MIG-10 (lamellipodin) has netrin-independent functions and is a FOS-1A transcriptional target during anchor cell invasion in C. elegans.

To transmigrate basement membrane, cells must coordinate distinct signaling activities to breach and pass through this dense extracellular matrix barrier. Netrin expression and activity are strongly associated with invasion in developmental and pathological processes, but how netrin signaling is coordinated with other pathways during invasion is poorly understood. Using the model of anchor cell...

متن کامل

MIG-10 (Lamellipodin) stabilizes invading cell adhesion to basement membrane and is a negative transcriptional target of EGL-43 in C. elegans.

Cell invasion through basement membrane (BM) occurs in many physiological and pathological contexts. MIG-10, the Caenorhabditis elegans Lamellipodin (Lpd), regulates diverse biological processes. Its function and regulation in cell invasive behavior remain unclear. Using anchor cell (AC) invasion in C. elegans as an in vivo invasion model, we have previously found that mig-10's activity is larg...

متن کامل

Regulation of anchor cell invasion and uterine cell fates by the egl-43 Evi-1 proto-oncogene in Caenorhabditis elegans.

Cell invasion is a tightly controlled process occurring during development and tumor progression. The nematode Caenorhabditis elegans serves as a genetic model to study cell invasion during normal development. In the third larval stage, the anchor cell in the somatic gonad first induces and then invades the adjacent epidermal vulval precursor cells. The homolog of the Evi-1 oncogene, egl-43, is...

متن کامل

Cell invasion through basement membrane

Cell invasion through basement membrane is an essential part of normal development and physiology, and occurs during the pathological progression of human inflammatory diseases and cancer. F-actin-rich membrane protrusions, called invadopodia, have been hypothesized to be the "drill bits" of invasive cells, mediating invasion through the dense, highly cross-linked basement membrane matrix. Thou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 121  شماره 

صفحات  -

تاریخ انتشار 2005